Binarity of a protostar affects the evolution of the disk and planets

  • Duchêne, G. & Kraus, A. Stellar complexity. Annu. Rev. Astron. Astrophys. 51269-310

    ADS
    Article

    Google Scholar

  • Jennings, RE, Cameron, DHM, Cudlip, W. & Hirst, CJ IRAS observations of NGC1333. Mon. Not. R. Astron. Soc. 226461-471 (1987).

    ADS
    CAS
    Article

    Google Scholar

  • Sandell, G., Knee, LBG, Aspin, C., Robson, IE & Russell, APG A molecular jet and bow shock in the low mass protostellar binary NGC 1333-IRAS2. Astron. Astrophys. 285L1–L4 (1994).

    ADS
    CAS

    Google Scholar

  • Jørgensen, JK, Hogerheijde, MR, van Dishoeck, EF, Blake, GA & Schöier, FL Outflows, rotation and chemistry on small scales in the protostellar system NGC1333-IRAS2. Astron. Astrophys. 413993-1007 (2004).

    ADS
    Article

    Google Scholar

  • Tobin, JJ et al. The VLA Nascent Disk and Multiplicity (VANDAM) survey of Perseus protostars. resolving the sub-arcsecond binary system in NGC 1333 IRAS2A. Astrophys. J 79861 (2015).

    ADS
    Article

    Google Scholar

  • Zucker, C. et al. Mapping distances across the Perseus molecular cloud using CO observations, stellar photometry, and Gaia DR2 parallax measurements. Astrophys. J 86983 (2018).

    ADS
    CAS
    Article

    Google Scholar

  • Jørgensen, JK et al. Probing the inner 200 AU of low-mass protostars: high excitation transitions of organic molecules and continuous emission at high angular resolution toward the class 0 young stellar object NGC 1333-IRAS2A. Astrophys. J 632973 (2005).

    ADS
    Article

    Google Scholar

  • Fendt, C. & Zinnecker, H. Possible bending mechanisms of protostellar jets. Astron. Astrophys. 334750–755 (1998).

    ADS

    Google Scholar

  • Frank, A. et al. In Protostars and Planets VI (eds. Beuther, H. et al.) 451 (Univ. Arizona Press, 2014).

  • Plunkett, AL et al. Episodic molecular outflow in the very young protostellar cluster Serpens South. Nature 52770–73 (2015).

    ADS
    CAS
    Article

    Google Scholar

  • Jørgensen, JK, Belloche, A. & Garrod, RT Astrochemistry during the formation of stars. Annu. Rev. Astron. Astrophys. 58727–778 (2020).

    ADS
    Article

    Google Scholar

  • Kuffmeier, M., Haugbølle, T. & Nordlund, . Zoom-in simulations of protoplanetary disks starting from GMC scales. Astrophys. J 8467 (2017).

    ADS
    Article

    Google Scholar

  • Kuruwita, RL & Federrath, C. The role of turbulence during the formation of circumbinary discs. Astron. Astrophys. 486A59 (2009).

    Google Scholar

  • Kuruwita, RL, Federrath, C. & Haugbølle, T. The dependence of episodic accretion on eccentricity during the formation of binary stars. Astron. Astrophys. 641A59 (2020).

    ADS
    CAS
    Article

    Google Scholar

  • Kuffmeier, M., Calcutt, H. & Kristensen, LE The bridge: a transient phenomenon of forming stellar multiples. Sequential formation of stellar companions in filaments around young protostars. Astron. Astrophys. 628A112 (2009).

    ADS
    CAS
    Article

    Google Scholar

  • Pineda, JE et al. A protostellar system fed by a streamer of 10,500 au length. Nat. Astron. 41158–1163 (2020).

    ADS
    Article

    Google Scholar

  • Brinch, C., Jørgensen, JK, Hogerheijde, MR, Nelson, RP & Gressel, O. Misaligned disks in the binary protostar IRS 43 Astrophys. J. Lett. 830L16 (2016).

    ADS
    Article

    Google Scholar

  • Lee, J.-E. Chemical evolution in VELLOs. J. Korean Astron. Soc. 4083-89 (2007).

    ADS
    Article

    Google Scholar

  • Visser, R. & Bergin, EA Fundamental aspects of episodic accretion chemistry explored with single-point models. Astrophys. J. Lett. 754L18

    ADS
    Article

    Google Scholar

  • Jørgensen, JK, Visser, R., Williams, JP & Bergin, EA Molecule sublimation as a tracer of protostellar accretion. Evidence for accretion bursts from high angular resolution C18Oh images. Astron. Astrophys. 579A23 (2015).

    ADS
    Article

    Google Scholar

  • Taquet, V., Wirström, ES & Charnley, SB Formation and recondensation of complex organic molecules during protostellar luminosity outbursts. Astrophys. J 82146 (2016).

    ADS
    Article

    Google Scholar

  • van Hoff, MLR, Bergin, EA, Jörgensen, JK & Blake, GA Carbon-grain sublimation: a new top-down component of protostellar chemistry. Astrophys. J. Lett. 897L38 (2020).

    ADS
    Article

    Google Scholar

  • McMullin, JP, Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Proc. Astronomical Data Analysis Software and Systems XVI (eds Shaw, RA, Hill, F. & Bell, DJ) Vol. 376, Astronomical Society of the Pacific Conference Series, 127 (Astron. Soc. Pacific, 2007).

  • Karska, A. et al. The Herschel-PACS legacy of low-mass protostars: the properties of warm and hot gas components and their origin in far-UV illuminated shocks. Astrophys. J. Suppl. Ser. 23530 (2018).

    ADS
    Article

    Google Scholar

  • Artur de la Villarmois, E. et al. Physical and chemical fingerprint of protostellar disc formation. Astron. Astrophys. 626A71 (2009).

    Article

    Google Scholar

  • Bailer-Jones, CAL, Rybizki, J., Fouesneau, M., Demleitner, M. & Andrae, R. Estimating distances from parallaxes. V. Geometric and photogeometric distances to 1.47 billion stars in Gaia early data release 3 Astron. J 161147 (2021).

    ADS
    Article

    Google Scholar

  • Rodgers, SD & Charnley, SB Chemical evolution in protostellar envelopes: cocoon chemistry. Astrophys. J 585355-371 (2003).

    ADS
    CAS
    Article

    Google Scholar

  • Jørgensen, JK, Schöier, FL & van Dishoeck, EF Physical structure and CO abundance of low-mass protostellar envelopes. Astron. Astrophys. 389908-930 (2002).

    ADS
    Article

    Google Scholar

  • Kristensen, LE et al. Water in star-forming regions with Herschel (WISH). II. Evolution of 557 GHz10-101 emission in low-mass protostars. Astron. Astrophys. 542A8

    Article

    Google Scholar

  • Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 385337–364 (2002).

    ADS
    Article

    Google Scholar

  • Haugbølle, T., Padoan, P. & Nordlund, . The stellar IMF from isothermal MHD turbulence. Astrophys. J 85435 (2018).

    ADS
    Article

    Google Scholar

  • Offner, SSR, Klein, RI, McKee, CF & Krumholz, MR The effects of radiative transfer on low-mass star formation. Astrophys. J 703131–149 (2009).

    ADS
    Article

    Google Scholar

  • Bate, MR Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation. Mon. Not. R. Astron. Soc. 4193115–3146 (2012).

    ADS
    Article

    Google Scholar

  • Klein, RI Feedback effects in the high mass and low mass star formation. In Proc. Numerical Modeling of Space Plasma Flows, Astronum-2009 (eds Pogorelov, NV et al.) Vol. 429, Astronomical Society of the Pacific Conference Series, 97 (Astron. Soc. Pacific, 2010).

  • Krumholz, MR, Klein, RI & McKee, CF Radiation-hydrodynamic simulations of the formation of Orion-like star clusters. II. The initial mass function from winds, turbulence, and radiation. Astrophys. J 75471

    ADS
    Article

    Google Scholar

  • Hennebelle, P., Commerçon, B., Lee, Y.-N. & Chabrier, G. What is the role of stellar radiative feedback in setting the stellar mass spectrum? Astrophys. J 904194 (2020).

    ADS
    CAS
    Article

    Google Scholar

  • Tanaka, Kei, Tan, JC, Zhang, Y. & Hosokawa, T. The impact of feedback in massive star formation. II. Lower star formation efficiency at lower metallicity. Astrophys. J 86168 (2018).

    ADS
    Article

    Google Scholar

  • Kuiper, R. & Hosokawa, T. First hydrodynamics simulations of radiation forces and photoionization feedback in massive star formation. Astron. Astrophys. 616A101 (2018).

    ADS
    Article

    Google Scholar

  • Leave a Comment

    Your email address will not be published. Required fields are marked *