Towards defining biomarkers to evaluate concussions using virtual reality and a moving platform (BioVRSea)

  • McCrory, P. et al. What is the definition of sports-related concussion: A systematic review. Br. J. Sports Med. 51(11), 877–887. https://doi.org/10.1136/bjsports-2016-097393 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Anderson, T., Heitger, M. & Macleod, A. D. Concussion and mild head injury. Pract. Neurol. 6(6), 342–357. https://doi.org/10.1136/jnnp.2006.106583 (2006).

    Article 

    Google Scholar
     

  • Shaw, N. A. The neurophysiology of concussion. Prog. Neurobiol. 67(4), 281–344. https://doi.org/10.1016/S0301-0082(02)00018-7 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • McCrory, P. et al. Consensus statement on concussion in sport—The 5th international conference on concussion in sport held in Berlin, October 2016. Br. J. Sports Med. 51(11), 838–847. https://doi.org/10.1136/bjsports-2017-097699 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Lovell, M. The neurophysiology and assessment of sports-related head injuries. Phys. Med. Rehabil. Clin. N. Am. 20(1), 39–53. https://doi.org/10.1016/j.pmr.2008.10.003 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Langlois, J. A., Rutland-Brown, W. & Wald, M. M. The epidemiology and impact of traumatic brain injury: A brief overview. J. Head Trauma Rehabil. 21(5), 375–378. https://doi.org/10.1097/00001199-200609000-00001 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Clay, M. B., Glover, K. L. & Lowe, D. T. Epidemiology of concussion in sport: A literature review. J. Chiropr. Med. 12(4), 230–251. https://doi.org/10.1016/j.jcm.2012.11.005 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ianof, J. N. et al. Sport-related concussions. Dement. Neuropsychol. 8(1), 14–19. https://doi.org/10.1590/S1980-57642014DN81000003 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Covassin, T., Elbin, R. J., Bleecker, A., Lipchik, A. & Kontos, A. P. Are there differences in neurocognitive function and symptoms between male and female soccer players after concussions?. Am. J. Sports Med. 41(12), 2890–2895. https://doi.org/10.1177/0363546513509962 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Daneshvar, D. H., Nowinski, C. J., McKee, A. & Cantu, R. C. The epidemiology of sport-related concussion. Clin. Sports Med. 30(1), 1–17. https://doi.org/10.1016/j.csm.2010.08.006 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGroarty, N. K., Brown, S. M. & Mulcahey, M. K. Sport-related concussion in female athletes: A systematic review. Orthop. J. Sports Med. 8(7), 2325967120932306. https://doi.org/10.1177/2325967120932306 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merritt, V. C., Padgett, C. R. & Jak, A. J. A systematic review of sex differences in concussion outcome: What do we know?. Clin. Neuropsychol. 33(6), 1016–1043. https://doi.org/10.1080/13854046.2018.1508616 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mollayeva, T., El-Khechen-Richandi, G. & Colantonio, A. Sex & gender considerations in concussion research. Concussion https://doi.org/10.2217/cnc-2017-0015 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chancellor, S. E., Franz, E. S., Minaeva, O. V. & Goldstein, L. E. Pathophysiology of concussion. Semin. Pediatr. Neurol. https://doi.org/10.1016/j.spen.2019.03.004 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Broglio, S. P. & Puetz, T. W. The effect of sport concussion on neurocognitive function, self-report symptoms and postural control. Sports Med. 38(1), 53–67. https://doi.org/10.2165/00007256-200838010-00005 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Dams-O’Connor, K. et al. Screening for traumatic brain injury: Findings and public health implications. J. Head Trauma Rehabil. 29(6), 479–489. https://doi.org/10.1097/HTR.0000000000000099 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szczupak, M., Hoffer, M. E., Murphy, S. & Balaban, C. D. Posttraumatic dizziness and vertigo. Handb Clin Neurol 137, 295–300 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Di Giulio, I., Maganaris, C. N., Baltzopoulos, V. & Loram, I. D. The proprioceptive and agonist roles of gastrocnemius, soleus, and tibialis anterior muscles in maintaining human upright posture. J. Physiol. 587, 2399–2416. https://doi.org/10.1113/jphysiol.2009.168690 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandel, N., Reynolds, E., Cohen, P. E., Gillie, B. L. & Kontos, A. P. Anxiety and mood clinical profile following sport-related concussion: From risk factors to treatment. Sport Exerc. Perform. Psychol. 6(3), 304–323. https://doi.org/10.1037/spy0000098 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kontos, A. P., Deitrick, J. M., Collins, M. W. & Mucha, A. Review of vestibular and oculomotor screening and concussion rehabilitation. J. Athl. Train. 52(3), 256–261. https://doi.org/10.4085/1062-6050-51.11.05 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buckley, T. A., Oldham, J. R. & Caccese, J. B. Postural control deficits identify lingering post-concussion neurological deficits. J. Sport Health Sci. 5(1), 61–69. https://doi.org/10.1016/j.jshs.2016.01.007 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manley, G. et al. A systematic review of potential long-term effects of sport-related concussion. Br J Sports Med 51(12), 969–977. https://doi.org/10.1136/bjsports-2017-097791 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sosnoff, J. J., Broglio, S. P., Shine, S. & Ferrara, M. S. Previous mild traumatic brain injury and postural-control dynamics. J Athl Train. 46(1), 85–91. https://doi.org/10.4085/1062-6050-46.1.85 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, M. W. et al. A comprehensive, targeted approach to the clinical care of athletes following sport-related concussion. Knee Surg. Sports Traumatol. Arthrosc. 22(2), 235–246. https://doi.org/10.1007/s00167-013-2791-6 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Temple, D. R., Lee, B.-C. & Layne, C. S. Effects of tibialis anterior vibration on postural control when exposed to support surface translations. Somatosens. Mot. Res. 33(1), 42–48. https://doi.org/10.3109/08990220.2016.1171207 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Echemendia, R. J. et al. The sport concussion assessment tool 5th edition (SCAT5): Background and rationale. Br. J. Sports Med. 51, 848–850 (2017).

    PubMed 

    Google Scholar
     

  • Biagianti, B., Stocchetti, N., Brambilla, P. & Van Vleet, T. Brain dysfunction underlying prolonged post-concussive syndrome: A systematic review. J. Affect. Disord. 262, 71–76. https://doi.org/10.1016/j.jad.2019.10.058 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Conley, A. C. et al. Resting state electroencephalography and sports-related concussion: A systematic review. J. Neurotrauma 36(1), 1–13. https://doi.org/10.1089/neu.2018.5761 (2018).

    Article 

    Google Scholar
     

  • Ianof, J. N. & Anghinah, R. Traumatic brain injury: An EEG point of view. Dementia & Neuropsychologia 11(1), 3–5. https://doi.org/10.1590/1980-57642016dn11-010002 (2017).

    Article 

    Google Scholar
     

  • Munia, T. T. K., Haider, A., Schneider, C., Romanick, M. & Fazel-Rezai, R. A novel EEG based spectral analysis of persistent brain Function alteration in athletes with concussion history. Sci. Rep. 7, 17221. https://doi.org/10.1038/s41598-017-17414-x (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simmons, J. H. & Kerasidis, H. Chapter 25—Electroencephalography as a biomarker of concussion. In Biomarkers for Traumatic Brain Injury (eds Wu, A. H. B. & Peacock, W. F.) 367–396 (Academic Press, 2020).


    Google Scholar
     

  • Kam, J. W. Y. & Todd, H. C. Electroencephalogram Recording in Humans. In Basic Electrophysiological Methods (eds Covey, Ellen & Carter, Matt) (Oxford University Press, 2015).


    Google Scholar
     

  • Poltavski, D., Bernhardt, K., Mark, C. & Biberdorf, D. Frontal theta-gamma ratio is a sensitive index of concussion history in athletes on tasks of visuo-motor control. Sci. Rep. 9(1), 17565. https://doi.org/10.1038/s41598-019-54054-9 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fong, D. H. C. et al. Steady-state visual-evoked potentials as a biomarker for concussion: A pilot study. Front. Neurosci. https://doi.org/10.3389/fnins.2020.00171 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kontos, A. P. et al. Preliminary evidence of reduced brain network activation in patients with posttraumatic migraine following concussion. Brain Imaging Behav. 10(2), 594–603. https://doi.org/10.1007/s11682-015-9412-6 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, J., Sebastianelli, W. & Slobounov, S. EEG and postural correlates of mild traumatic brain injury in athletes. Neurosci. Lett. 377(3), 158–163. https://doi.org/10.1016/j.neulet.2004.11.090 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • De Beaumont, L. et al. Brain function decline in healthy retired athletes who sustained their last sports concussion in early adulthood. Brain 132(3), 695–708. https://doi.org/10.1093/brain/awn347 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Wickramaratne, S. D., Mahmud, M. S., & Ross, R. S. (2020). Use of brain electrical activity to classify people with concussion: A deep learning approach. ICC 2020 – 2020 IEEE International Conference on Communications (ICC), 1–6. https://doi.org/10.1109/ICC40277.2020.9149393

  • Mittenberg, W., Canyock, E. M., Condit, D. & Patton, C. Treatment of post-concussion syndrome following mild head injury. J. Clin. Exp. Neuropsychol. 23(6), 829–836. https://doi.org/10.1076/jcen.23.6.829.1022 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nguyen, J., Brown, J., Mold, J. W. & Welborn, T. L. In patients with concussions, is the probability of permanent neurological damage predicted better by total number of concussions than by severity and duration of individual concussions?. J. Okla. State Med. Assoc. 106(11), 431–432 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papathanasiou, E. S., Cronin, T., Seemungal, B. & Sandhu, J. Electrophysiological testing in concussion: A guide to clinical applications. J. Concussion 2, 2059700218812634. https://doi.org/10.1177/2059700218812634 (2018).

    Article 

    Google Scholar
     

  • Paillard, T. & Noé, F. Techniques and methods for testing the postural function in healthy and pathological subjects [Review Article]. BioMed Res. Int. Hindawi https://doi.org/10.1155/2015/891390 (2015).

    Article 

    Google Scholar
     

  • Craig, C. E., Goble, D. J. & Doumas, M. Proprioceptive acuity predicts muscle co-contraction of the tibialis anterior and gastrocnemius medialis in older adults’ dynamic postural control. Neuroscience 322, 251–261. https://doi.org/10.1016/j.neuroscience.2016.02.036 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Degani, A. M. et al. The effects of mild traumatic brain injury on postural control. Brain Inj. 31(1), 49–56. https://doi.org/10.1080/02699052.2016.1225982 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kleiger, R. E., Stein, P. K. & Bigger, J. T. Heart rate variability: Measurement and clinical utility. Ann. Non-invasive Electrocardiol. 10(1), 88–101. https://doi.org/10.1111/j.1542-474X.2005.10101.x (2005).

    Article 

    Google Scholar
     

  • Bishop, S. A., Dech, R. T., Guzik, P. & Neary, J. P. Heart rate variability and implication for sport concussion. Clin. Physiol. Funct. Imaging 38(5), 733–742. https://doi.org/10.1111/cpf.12487 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Abaji, J. P., Curnier, D., Moore, R. D. & Ellemberg, D. Persisting effects of concussion on heart rate variability during physical exertion. J. Neurotrauma 33(9), 811–817. https://doi.org/10.1089/neu.2015.3989 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Memmini, A. K., Fountaine, M. F. L., Broglio, S. P. & Moore, R. D. Long-term influence of concussion on cardio-autonomic function in adolescent hockey players. J. Athl. Train. https://doi.org/10.4085/1062-6050-0578.19 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pyndiura, K. L., Battista, A. P. D. & Hutchison, M. G. A history of concussion is associated with minimal perturbations to heart rate variability in athletes. Brain Inj. 34(10), 1416–1421. https://doi.org/10.1080/02699052.2020.1802661 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Baugh, C. M. et al. (2020) Chronic traumatic encephalopathy: Neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging Behav 6(2), 244–254 (2012).

    PubMed 

    Google Scholar
     

  • Samuel, A., Solomon, J. & Mohan, D. A critical review on the normal postural control. Physiother. Occup. Ther. J. 8, 71–75 (2015).


    Google Scholar
     

  • Cavanaugh, J. T. et al. Detecting altered postural control after cerebral concussion in athletes with normal postural stability. Br. J. Sports Med. 39(11), 805–811. https://doi.org/10.1136/bjsm.2004.015909 (2005).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cavanaugh, J. T. et al. Recovery of postural control after cerebral concussion: New insights using approximate entropy. J. Athl. Train. 41(3), 305–313 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slobounov, S., Sebastianelli, W. & Hallett, M. Residual brain Dysfunction observed one year post-mild traumatic brain injury: combined EEG and balance study. Clin Neurophysiol 123(9), 1755–1761 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sawires, Y., Huang, E., Gomes, A., Fernandes, K. & Wang, D. Development of Concussion Evaluation Tools Using Life-Like Virtual Reality Environments. In HCI International 2018 – “Posters” Extended Abstracts (ed. Stephanidis, C.) 326–333 (Springer International Publishing, 2018).


    Google Scholar
     

  • Rao, H. M. et al. Sensorimotor conflict tests in an immersive virtual environment reveal subclinical impairments in mild traumatic brain injury. Sci Rep 10, 14773. https://doi.org/10.1038/s41598-020-71611-9 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vigotsky, A. D., Halperin, I., Lehman, G. J., Trajano, G. S. & Vieira, T. M. Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Front. Physiol. 4(8), 985. https://doi.org/10.3389/fphys.2017.00985 (2018).

    Article 

    Google Scholar
     

  • Unnsteinsdottir Kristensen, I. S., Krisjansdottir, H., Sigurvinsdóttir, R., Sigurjonsdottir, H. A., Eggertsdottir Claessen, L. Ó., & Jónsdóttir, M. K. (Under review). Methodology matters: Added information affects the self-report of concussions and symptoms among female athletes. Journal of Head Trauma Rehabilitation.

  • Clouter, A., Shapiro, K. L. & Hanslmayr, S. Theta phase synchronization is the glue that binds human associative memory. Curr. Biol. 27(20), 3143-3148.e6. https://doi.org/10.1016/j.cub.2017.09.001 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mari-Acevedo, J., Yelvington, K. & Tatum, W. O. Chapter 9—Normal EEG variants. In Handbook of Clinical Neurology (eds Levin, K. H. & Chauvel, P.) (Elsevier, 2019).


    Google Scholar
     

  • Ryu, K., Choi, Y., Kim, J., Kim, Y. & Chio, S. Differential frontal theta activity during cognitive and motor tasks. J. Integr. Neurosci. 15(3), 295–303. https://doi.org/10.1142/S0219635216500199 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y.-K., Jung, T.-P. & Lin, C.-T. Theta and alpha oscillations in attentional interaction during distracted driving. Front. Behav. Neurosci. https://doi.org/10.3389/fnbeh.2018.00003 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • King, N. S. & Kirwilliam, S. Permanent post-concussion symptoms after mild head injury. Brain Inj. 25(5), 462–470. https://doi.org/10.3109/02699052.2011.558042 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Beaulieu, C. et al. Long-term effects of concussions on psychomotor speed and cognitive control processes during motor sequence learning. J. Psychophysiol. 33(2), 96–108. https://doi.org/10.1027/0269-8803/a000213 (2019).

    Article 

    Google Scholar
     

  • Zhang, A. L., Sing, D. C., Rugg, C. M., Feeley, B. T. & Senter, C. The rise of concussions in the adolescent population. Orthopaed. J. Sports Med. https://doi.org/10.1177/2325967116662458 (2016).

    Article 

    Google Scholar
     

  • Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Brain Res. Rev. 29(2–3), 169–195. https://doi.org/10.1016/s0165-0173(98)00056-3 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kristjánsdóttir, H. et al. Self-reported concussion history among Icelandic female athletes with and without a definition of concussion. Clin. Neuropsychol. https://doi.org/10.1080/13854046.2020.1814873 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Morin M, Langevin P, Fait P (2016) Cervical spine involvement in mild traumatic brain injury: A review. J Sports Med (Hindawi Publ Corp) 1590161

  • McCabe, J. T. & Tucker, L. B. Sex as a biological variable in preclinical modeling of blast-related traumatic brain injury. Front Neurol 11, 541050 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gavett, B. E., Stern, R. A. & McKee, A. C. Chronic traumatic encephalopathy: A potential late effect of sport-related concussive and subconcussive head trauma. Clin. Sports Med. 30(1), 179–188 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011(2011), 879716. https://doi.org/10.1155/2011/879716 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MATLAB. R2020b (The MathWorks Inc, 2020).


    Google Scholar
     

  • Pedroni, A., Bahreini, A. & Langer, N. Automagic: Standardized preprocessing of big EEG data. Neuroimage 200, 460–473. https://doi.org/10.1016/j.neuroimage.2019.06.046 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433–459 (2010).


    Google Scholar
     

  • Recenti, M. et al. Toward predicting motion sickness using virtual reality and a moving platform assessing brain, muscles, and heart signals. Front. Bioeng. Biotechnol. 9, 635661. https://doi.org/10.3389/fbioe.2021.635661 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd international conference on document analysis and recognition (Vol. 1, pp. 278–282). IEEE.

  • Recenti, M., et al. (2020). Healthy aging within an image: Using muscle radiodensitometry and lifestyle factors to predict diabetes and hypertension. IEEE J. Biomed. Health Inf.

  • Recenti, M., et al. (2020). Predicting body mass index and isometric leg strength using soft tissue distributions from computed tomography scans. Health Technol. pp 1–11.

  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Ann. Stat. pp 1189–1232.

  • Freund, Y. & Schapire, R. E. A decision-theoretic generalization of online learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997).

    MATH 

    Google Scholar
     

  • Suykens, J. A. & Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999).


    Google Scholar
     

  • Pal, S. K. & Mitra, S. Multilayer perceptron, fuzzy sets, and classification. IEEE Transac. on Neural Netw. 3(5), 683–697 (1992).

    CAS 

    Google Scholar
     

  • Hossin, M. & Sulaiman, M. N. A review on evaluation metrics for data classification evaluations. Int. J Data Mining Knowl. Manag. Process 5(2), 1 (2015).


    Google Scholar
     

  • Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai 14(2), 1137–1145 (1995).


    Google Scholar
     

  • Alosco, M. L. et al. Utility of providing a concussion definition in the assessment of concussion history in former NFL players. Brain Inj. 31(8), 1116–1123. https://doi.org/10.1080/02699052.2017.1294709 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Barollo, F. et al. Postural control adaptation and habituation during vibratory proprioceptive stimulation: An HD-EEG investigation of cortical recruitment and kinematics. IEEE Trans Neural Syst Rehabil Eng. 28(6), 1381–1388. https://doi.org/10.1109/TNSRE.2020.2988585 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sipp, A. R., Gwin, J. T., Makeig, S. & Ferris, D. P. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response. J Neurophysiol. 110(9), 2050–2060. https://doi.org/10.1152/jn.00744.2012 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iverson, G. L. Outcome from mild traumatic brain injury. Curr. Opin. Psychiatry 18(3), 301–317. https://doi.org/10.1097/01.yco.0000165601.29047.ae (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Bilodeau, M., Arsenault, A. B., Gravel, D. & Bourbonnais, D. The influence of an increase in the level of force on the EMG power spectrum of elbow extensors. Eur. J. Appl. Physiol. 61(5), 461–466 (1990).

    CAS 

    Google Scholar
     

  • Sapsanis, C., Georgoulas, G., Tzes, A., & Lymberopoulos, D. (2013, July). Improving EMG based classification of basic hand movements using EMD. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 5754–5757). IEEE

  • Hewson, D. J., Hogrel, J. Y., Langeron, Y. & Duchêne, J. Evolution in impedance at the electrode-skin interface of two types of surface EMG electrodes during long-term recordings. J. Electromyogr. Kinesiol. 13(3), 273–279 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Jerritta, S., Murugappan, M., Wan, K. & Yaacob, S. Emotion recognition from facial EMG signals using higher order statistics and principal component analysis. J. Chin. Inst. Eng. 37(3), 385–394 (2014).


    Google Scholar
     

  • Williams, D. M., Sharma, S. & Bilodeau, M. Neuromuscular fatigue of elbow flexor muscles of dominant and non-dominant arms in healthy humans. J. Electromyogr. Kinesiol. 12(4), 287–294 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Van Boxtel, A., Goudswaard, P., Van der Molen, G. M. & Van Den Bosch, W. E. Changes in electromyogram power spectra of facial and jaw-elevator muscles during fatigue. J. Appl. Physiol. 54(1), 51–58 (1983).

    PubMed 

    Google Scholar
     

  • Löscher, W. N., Cresswell, A. G. & Thorstensson, A. Electromyographic responses of the human triceps surae and force tremor during sustained sub-maximal isometric plantar flexion. Acta Physiol. Scand. 152(1), 73–82 (1994).

    PubMed 

    Google Scholar
     

  • Jordan, M. I. & Mitchell, T. M. Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dumkrieger, G., Chong, C. D., Ross, K., Berisha, V. & Schwedt, T. J. Differentiating between migraine and post-traumatic headache using a machine learning classifier. Neurology 98(1 Supplement 1), 5–6 (2022).


    Google Scholar
     

  • Chu, Y., Knell, G., Brayton, R. P., Burkhart, S. O., Jiang, X., & Shams, S. (2022). Machine learning to predict sports-related concussion recovery using clinical data. Ann. Phys. Rehabilitation Med. pp 101626–101626.

  • Rosenblatt, C. K., Harriss, A., Babul, A.-N. & Rosenblatt, S. A. Machine learning for subtyping concussion using a clustering approach. Front. Human Neurosci. https://doi.org/10.3389/fnhum.2021.716643 (2021).

    Article 

    Google Scholar
     

  • Visscher, R. M., Feddermann-Demont, N., Romano, F., Straumann, D. & Bertolini, G. Artificial intelligence for understanding concussion: Retrospective cluster analysis on the balance and vestibular diagnostic data of concussion patients. PLoS ONE 14(4), e0214525 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, Y. et al. Concussion classification via deep learning using whole-brain white matter fiber strains. PLoS ONE 13(5), e0197992 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleck, D. E. et al. Predicting post-concussion symptom recovery in adolescents using a novel artificial intelligence. J. Neurotrauma 38(7), 830–836 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castellanos, J. et al. Predicting risk of sport-related concussion in collegiate athletes and military cadets: A machine learning approach using baseline data from the CARE Consortium Study. Sports Med. 51(3), 567–579 (2021).

    PubMed 

    Google Scholar
     

  • Boshra, R. et al. From group-level statistics to single-subject prediction: Machine learning detection of concussion in retired athletes. IEEE Trans. Neural Syst. Rehabil. Eng. 27(7), 1492–1501 (2019).

    PubMed 

    Google Scholar
     

  • Lee, C. H. & Sun, T. L. Evaluation of postural stability based on a force plate and inertial sensor during static balance measurements. J. Physiol. Anthropol. 37(1), 1–16. https://doi.org/10.1186/s40101-018-0187-5 (2018).

    Article 

    Google Scholar
     

  • Rhea, C. K., Kiefer, A. W., Haran, F. J., Glass, S. M. & Warren, W. H. A new measure of the CoP trajectory in postural sway: Dynamics of heading change. Med. Eng. Phys. 36(11), 1473–1479 (2014).

    PubMed 

    Google Scholar
     

  • Richman, J. S. & Moorman, J. R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J Physiol. -Heart Circulatory Physiol. 278(6), H2039–H2049 (2000).

    CAS 

    Google Scholar
     

  • Costa, M., Goldberger, A. L. & Peng, C. K. Multiscale entropy analysis of biological signals. Phys. Rev. E 71(2), 021906 (2005).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Ahmed, M. U. & Mandic, D. P. Multivariate multiscale entropy analysis. IEEE Signal Process. Lett. 19(2), 91–94 (2011).

    ADS 

    Google Scholar
     

  • Yue, J. K. et al. Sideline concussion assessment: The current state of the art. Neurosurgery 87(3), 466–475. https://doi.org/10.1093/neuros/nyaa022 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Heinmiller, L. & Gunton, K. B. A review of the current practice in diagnosis and management of visual complaints associated with concussion and postconcussion syndrome. Curr. Opin. Ophthalmol. 27(5), 407–412. https://doi.org/10.1097/ICU.0000000000000296 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Robinson, M. (2019). Evaluation of the Psychometric and Measurement Properties of the SCAT5 and Child SCAT5. 150.

  • Guay, S., De Beaumont, L., Drisdelle, B. L., Lina, J.-M. & Jolicoeur, P. Electrophysiological impact of multiple concussions in asymptomatic athletes: A re-analysis based on alpha activity during a visual-spatial attention task. Neuropsychologia 108, 42–49. https://doi.org/10.1016/j.neuropsychologia.2017.11.022 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Cao, C., Tutwiler, R. L. & Slobounov, S. Automatic classification of athletes with residual functional deficits following concussion by means of EEG signal using support vector machine. IEEE Trans. Neural Syst. Rehabil. Eng. 16(4), 327–335. https://doi.org/10.1109/TNSRE.2008.918422 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Coenen, J., Van Den Bongard, F., Delling, A. C. & Reinsberger, C. Functional connectivity within the default mode network in response to exercise during return-to-sport following concussion. Neurology https://doi.org/10.1212/01.wnl.0000801904.27836.ef (2022).

    Article 

    Google Scholar
     

  • King, L. A. et al. Sensor-based balance measures outperform modified balance error scoring system in identifying acute concussion. Ann. Biomed. Eng. 45(9), 2135–2145. https://doi.org/10.1007/s10439-017-1856-y (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Çınar, E., Grilli, L., Friedman, D. & Gagnon, I. Tracking postural stability of children and adolescents after a concussion: sport-related versus non-sport-related concussion. Turkish J. Pediatr. 63(3), 471–481 (2021).


    Google Scholar
     

  • Ivanenko, Y. & Gurfinkel, V. S. Human postural control. Front. Neurosci. 12, 171. https://doi.org/10.3389/fnins.2018.00171PMCID:PMC5869197 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patejak, S., Forrest, J., Harting, E., Sisk, M. & Schussler, E. A systematic review of center of mass as a measure of dynamic postural control following concussion. Int. J. Sports Phys. Ther. 16(5), 1222–1234 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicholas, R. (2021). Identification of chronic postural stability impairments associated with history of concussion. Doctor of Philosophy (PhD), Dissertation, Rehabilitation Sciences, Old Dominion University, DOI: https://doi.org/10.25777/71r7-5774. https://digitalcommons.odu.edu/pt_etds/6

  • Qiao, C. Z., Chen, A., Blouin, J. S. & Wu, L. C. Potential mechanisms of acute standing balance deficits after concussions and subconcussive head impacts: A review. Ann Biomed Eng 49, 2693–2715. https://doi.org/10.1007/s10439-021-02831-x (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Martingano, A. J. & Persky, S. Virtual reality expands the toolkit for conducting health psychology research. Soc. Personal. Psychol. Compass https://doi.org/10.1111/spc3.12606 (2021).

    Article 

    Google Scholar
     

  • Clay, F. et al. Use of immersive virtual reality in the assessment and treatment of alzheimer’s disease: A systematic review. J. Alzheimer’s Dis. 75(1), 23–43. https://doi.org/10.3233/JAD-191218 (2020).

    Article 

    Google Scholar
     

  • Shatte, A. B. R., Hutchinson, D. M. & Teague, S. J. Machine learning in mental health: A scoping review of methods and applications. Psychol. Med. 49(9), 1–23. https://doi.org/10.1017/S0033291719000151 (2019).

    Article 

    Google Scholar
     

  • Jónsdóttir, M. K. et al. Concussion among female athletes in Iceland: Stress, depression, anxiety, and quality of life. Nordic Psychol. https://doi.org/10.1080/19012276.2021.2004916 (2021).

    Article 

    Google Scholar
     

  • Dierijck, J. K. et al. Effects of acute concussion on centre of pressure variables during quiet stance. Br. J. Sports Med. 51, A40 (2017).


    Google Scholar
     

  • Reilly, N., Prebor, J., Moxey, J. & Schussler, E. Chronic impairments of static postural stability associated with history of concussion. Exp. Brain Res. 238(12), 2783–2793 (2020).

    PubMed 

    Google Scholar
     

  • Luo, H. et al. The effect of visual stimuli on stability and complexity of postural control. Front. Neurol. 9, 48 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto, T. et al. Universal and individual characteristics of postural sway during quiet standing in healthy young adults. Physiol. Rep. 3(3), e12329 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chander, H. et al. Virtual-reality-induced visual perturbations impact postural control system behavior. Behav. Sci. 9(11), 113 (2019).

    PubMed Central 

    Google Scholar
     

  • Jónbjörnsson, G. S. & Tómasson, T. G. (University of Iceland, Reykjavik, 2016). Íslensk þýðing og áreiðanleikaprófun á SCAT3 höfuðáverkamælitækinu. http://hdl.handle.net/1946/24722

  • Parker, T. M., Osternig, L. R., van Donkelaar, P. & Chou, L.-S. Balance control during gait in athletes and non-athletes following concussion. Med. Eng. Phys. 30, 959–967 (2008).

    PubMed 

    Google Scholar
     

  • Rawlings, S., Takechi, R. & Lavender, A. P. Effects of sub-concussion on neuropsychological performance and its potential mechanisms: A narrative review. Brain Res. Bull. 165, 56–62 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Comment

    Your email address will not be published. Required fields are marked *